Ti Reactive Sintering of Electrically Conductive Al2O3–TiN Composite: Influence of Ti Particle Size and Morphology on Electrical and Mechanical Properties

نویسندگان

  • Wei Zhai
  • Xu Song
  • Tao Li
  • Bingxue Yu
  • Wanheng Lu
  • Kaiyang Zeng
چکیده

In the current study, Al2O3–TiN composites were successfully fabricated with various particle sizes (10, 20, 30, and 50 μm) and concentrations (5, 10, 15, and 20 vol %) via a novel ball milling + Ti reactive sintering process. By applying the reactive sintering, Ti powders will transform into TiN particles, which act as mechanical reinforcements and electrical conductors in the Al2O3 matrix. The ball milling process alters the Ti powder morphology from a low-aspect-ratio sphere into a high-aspect-ratio disc, which reduces the electrical percolation threshold value from 29% to 15% in the current setup. However, such a threshold value is insensitive to the particle size. Meanwhile, the Ti particle size has a significant influence on the material’s mechanical properties. A small particle size results in less porosity and hence higher flexural strength of the composite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of TiN, CrN and (Ti, Cr) N Coatings Deposited by Cathodic ARC Evaporation

In this investigation PVD Ti-Cr)N coatings were deposited on hardened and tempered tool steel substrates using reactive arc evaporation. Physical and mechanical properties of coatings such as roughness, thickness, phase composition, hardness and modulus young and coefficient friction were evaluated. Phase compositions were studies by X-ray diffraction method. The surface microstructure and morp...

متن کامل

Surface modification for titanium implants by hydroxyapatite nanocomposite

Background: Titanium (Ti) implants are commonly coated with hydroxyapatite (HA). However, HA has some disadvantages such as brittleness, low tensile strength and fracture toughness. It is desirable to combine the excellent mechanical properties of ZrO2 and the chemical inertness of Al2O3 with respect to the purpose of this project which was coating Ti implants with HA-ZrO2-Al2O3 to modify the s...

متن کامل

Investigation of the electrical properties and corrosion resistance of TiN coating deposited by reactive sputtering on the titanium bipolar plate, used in polymeric fuel cell

The effect of titanium nitride film on the properties of titanium bipolar plates used in polymeric fuel cell was investigated in this research. TiN coatings was deposited on the Ti-grade 1 substrate by using DC-sputtering method. Pure titanium was used as target and coating deposition was done in argon and nitrogen atmosphere. Different TiN thickness was developed by changing sputtering time. T...

متن کامل

Investigation on Mechanical and Electrical Properties of Cu-Ti Nanocomposite Produced by Mechanical Alloying

In this paper, Cu-Ti nanocomposite synthesized via ball milling of copper-titanium powders in 1, 3, and 6 of weight percentage compounds. The vial speed was 350 rpm and ball to powder weight ratio kept at 15:1 under Argon atmosphere, and the time of milling was 90 h. Obtained powders were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS)....

متن کامل

Ti-Cr-N Coatings Deposited by Physical Vapor Deposition on AISI D6 Tool Steels

In this study, physical vapor deposition (PVD) Ti-Cr-N coatings were deposited at two different temperatures 100 and 400ºC on hardened and tempered tool steel substrates. The influence of the applied deposition temperature on the physical and mechanical properties of coatings such as roughness, thickness, phase composition, hardness and Young’s modulus were evaluated. Phase compositions were st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017